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ABSTRACT: Knowledge of the nutritional requirements of apex predators is key for determining
ecological interactions. However, an understanding of how diet is influenced by reproduction, and
the consequences of foraging variation on the nutritional status of a predator, is limited. Here, we
used short-term dietary markers (plasma and whole-blood fatty acids) integrated with reproduc-
tive hormones (17fB-estradiol and testosterone) and ultrasonography as a non-lethal approach to
investigate the effect of life stage on nutritional status and trophic dynamics of female tiger sharks
Galeocerdo cuvier. Despite their generalist feeding behavior, female tiger sharks fed on different
food sources and/or modulated their fatty acid metabolism depending on the reproductive con-
text. This suggests some adjustment in their nutritional requirements associated with changes in
their reproductive state. Plasma and whole-blood fatty acids indicated distinct dietary sources
across life stages, with a high dependence on coastal/benthic food resources during juvenile life
stages, and on pelagic/oceanic and reef-associated food resources during adult life stages. Higher
percentages of highly unsaturated omega-3 fatty acids found in females during their reproductive
cycles suggest the dependency on these fatty acids as a source of metabolic energy during repro-
duction. A high percentage of arachidonic acid (ARA) found in plasma of gravid females suggests
the possibility of a selective diet of ARA-rich prey species and/or selective mobilization of ARA
from stored energy during gestation. Based on our findings, we propose a conceptual model of
expected changes in nutritional and trophic markers across life stages of female tiger sharks.

KEY WORDS: Trophic markers - Nutritional condition - Dietary patterns - Tiger shark -
Galeocerdo cuvier - Reproduction - Trophic ecology - Physiology

Resale or republication not permitted without written consent of the publisher

1. INTRODUCTION

Understanding dietary patterns of top predators
and the factors influencing what is consumed are
central issues in determining how they can impact
ecosystem structure and function through top-down
predation effects (Estes et al. 2016, Hammerschlag et
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al. 2019). Throughout the life cycle of a predator,
energetic requirements can vary in response to inter-
nal biological processes, such as those related to
somatic growth, reproduction and migration (e.g.
Chaguaceda et al. 2020, Machovsky-Capuska &
Raubenheimer 2020). Therefore, energetic require-
ments associated with these physiological processes
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are an important factor affecting food intake and for-
aging preferences (e.g. Kohl et al. 2015). Although
studies have investigated the trophic roles and rela-
tionships among predators (e.g. Hussey et al. 2015,
Shipley et al. 2019), our understanding of how diet
and energy intake is influenced by life stage, and the
consequences of foraging variation on the nutritional
status of the predator, remains limited (Wai et al.
2012, Dicken et al. 2017, Hammerschlag et al. 2018).

Studies on the foraging ecology of predators have
generally focused on food quantity rather than qual-
ity (i.e. nutritional composition) (Kohl et al. 2015,
Flecker et al. 2019). However, food quality can have
a significant impact on fitness, including the survival,
development rate and growth, and reproductive suc-
cess of an individual (e.g. Simpson et al. 2010, Twin-
ing et al. 2018). Food quality can also reveal insights
into trophic interactions and nutrient-specific food
preferences (Kohl et al. 2015, Pethybridge et al.
2018). Fatty acids have physiologically important
roles in living organisms, such as providing meta-
bolic energy for maintenance and growth (Sargent et
al. 1995, Tocher 2003), and influencing reproductive
processes through a variety of mechanisms (Wathes
et al. 2007). For example, highly unsaturated fatty
acids of n3 (n3 HUFAs) and n6 series (n6 HUFAs)
influence fertilization rates, as they act as the main
component of sperm and oocyte plasma membranes
(Izquierdo et al. 2001, Wathes et al. 2007). Addition-
ally, arachidonic acid (C20:4n6, ARA), an n6 HUFA,
is directly involved in follicle maturation and ste-
roidogenesis during reproduction through prosta-
glandins (eicosanoids) (Wathes et al. 2007). Because
vertebrates are unable to synthesize de novo polyun-
saturated fatty acids (PUFAs), high-quality diets play
a key role in their reproduction (e.g. Tocher 2003,
Parrish 2009, Colombo et al. 2017). When transferred
from prey to predator, some fatty acids are subject to
biosynthesis (through chain elongation, desaturation
or catabolism via B-oxidation); however, since most
fatty acids remain relatively unchanged, these mole-
cules serve as dietary biomarkers (Dalsgaard et al.
2003, Budge et al. 2006, Iverson 2009).

Tiger sharks Galeocerdo cuvier are large, globally
distributed marine apex predators in tropical and
warm-temperate coastal and pelagic waters (Holland
et al. 2019). Tiger sharks are highly migratory and
exhibit considerable variability in their habitat use
and movements (Hammerschlag et al. 2012, Papasta-
matiou et al. 2013, Lea et al. 2015, Ajemian et al.
2020). As generalist and opportunistic consumers,
tiger sharks exploit a wide variety of prey, including
invertebrates, teleosts, sea turtles, marine mammals,

sea snakes, seabirds and other elasmobranchs (e.g.
Gallagher et al. 2011, Hammerschlag et al. 2015,
Dicken et al. 2017). The ontogenetic shifts in their
diet are well reported across several ocean basins, in
which large prey (e.g. turtles and elasmobranchs)
become more important in their diet with increasing
shark size (Dicken et al. 2017, Ferreira et al. 2017,
Salinas-de-Leén et al. 2019). While ontogenetic diet
expansion is well documented for this species, no
studies have explicitly investigated for potential vari-
ation in foraging ecology across life stages. Female
tiger sharks have a unique reproductive strategy (em-
bryotrophy, i.e. a type of aplacental viviparity where
embryos are nourished by an intracapsular fluid,
Castro et al. 2016), a suggested triennial breeding
cycle with a long gestation period (up to 16 mo, Whit-
ney & Crow 2007), and comparatively large broods
(18-70) of large embryos (~75 cm, Whitney & Crow
2007, Castro et al. 2016). Accordingly, a detailed
description of how diet and nutritional condition vary
throughout their life and life stages is valuable for
understanding their energetic needs and functional
roles.

Here, we combined analyses of short-term bio-
markers with information on tiger shark life stages to
non-lethally assess their nutritional ecology. Specifi-
cally, we compared plasma and whole-blood fatty
acid profiles among female life stages (i.e. immature,
adult non-gravid and gravid) and related these data
to body size and reproductive hormones (17p3-estra-
diol and testosterone) to evaluate variability in nutri-
tional ecology across different life-history stages.
Plasma is a good candidate fluid to investigate feed-
ing patterns and nutritional status via fatty acid
analysis because: (1) it has relatively fast turnover
rates (i.e. days to weeks, Kakela et al. 2009), and (2) it
functions in transporting dietary and non-dietary
fatty acids (e.g. inter-tissue routing of membrane
lipids and for metabolic functions), and therefore, has
high similarity with prey fatty acid profiles (e.g.
McMeans et al. 2012, Beckmann et al. 2014, Bierwa-
gen et al. 2019). Although fatty acid profiles in whole
blood have not been explored in sharks, it is a con-
venient fluid to use in field-based studies where ob-
taining large blood samples and/or isolating plasma
is challenging (Baylin et al. 2005, Tierney et al. 2008).

We considered the physiologically important fatty
acids (n3 and n6 HUFAs) and known trophic markers
(e.g. dinoflagellates and bacteria) to investigate 2
hypotheses related to reproduction and 1 hypothesis
related to ontogeny and spatial variation. First, we
hypothesized that females preparing to reproduce
would have higher dietary quality (i.e. higher per-
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centages of n3 and n6 HUFAs) than
other life stages. This is because: (1)
the importance of HUFAs in vertebrate
reproduction is well established, e.g.
through promoting egg viability and
improving survival (e.g. Tocher 2003,
Arts & Kohler 2009), and (2) non-gra-
vid adult females have been found to
exhibit higher energy demand (i.e.
with higher corticosteroid levels) com-
pared to immature females (B. Rangel,
N. Hammerschlag, J. Sulikowski, R.
Moreira unpubl. data). Secondly,
given that a capital-income breeding
strategy has been previously demon-
strated for tiger sharks, i.e. they rely
on both energy stores and opportunis-
tic feeding to support reproduction
(Hammerschlag et al. 2018), we antici-
pated that gravid females would not
display a nutritional deficiency in es-
sential fatty acids. In addition, given
that smaller tiger sharks spend more
time foraging in coastal and shallow
waters, while larger tiger sharks spend
more time foraging in offshore pelagic
food webs (e.g. Dicken et al. 2017), our
third hypothesis was that the diet of fe-
males would vary across life stages,
demonstrating ontogenetic changes in
trophic markers (i.e. basal resources,
Fig. 1). Based on that hypothesis, we
expected that smaller sharks would
have higher coastal fatty acid trophic
markers (i.e. C18:2n6, ARA), whereas
large tiger sharks would have higher
percentages of pelagic/oceanic mark-
ers (i.e. docosahexaenoic acid [DHA,
C22:6n3], C18:1n9, C16:1n7).

2. MATERIALS AND METHODS

2.1. Field procedures

Nutritional quality across life stages

Immaturel

Highly unsaturated fatty acids

Non-gravid Gravid

Benthic/coastal resources & b Pelagic/oceanic resources
ARA, C18:2n6 Q, Y] N A\'g DHA, C18:1n9, C16:1n7

Fig. 1. Conceptual model of hypothesized changes in dietary quality (highly
unsaturated fatty acids) and trophic markers across life stages (immature,
adult non-gravid, gravid) of female tiger sharks Galeocerdo cuvier. We pre-
dicted that non-gravid adult females preparing to reproduce would exhibit
both higher circulating sex hormones and higher percentages of highly unsat-
urated fatty acids (omega-3 and -6), in response to higher energetic demands
to support gonad development and preparation for reproduction (B. Rangel,
N. Hammerschlag, J. Sulikowski, R. Moreira unpubl. data). We further pre-
dicted that gravid females would not display nutritional deficiency in essential
fatty acids (i.e. highly unsaturated fatty acids) due to a capital-income breed-
ing strategy, where females rely on both energy stores and opportunistic feed-
ing to support reproduction. Smaller tiger sharks should rely more on coastal/
benthic prey sources, exhibiting higher coastal fatty acid trophic markers,
while larger tiger sharks should rely more on offshore food sources, exhibiting
a higher percentage of pelagic/oceanic trophic markers

et al. 2014), which were deployed (10-40 m deep)
and left to soak for 1 h before being checked for
shark presence. On capture, sharks were secured
by hand on the side of the boat or on a partially sub-

Tiger shark blood samples were collected on
week-long expeditions to Tiger Beach during
December 2011, July 2012, October 2013, May
2014, November 2014, April 2018 and January 2019,
at the northwestern edge of little Bahama Bank, off
the west end of Grand Bahama Island, Bahamas
(~26.6°N, 79.1°W). Sharks were passively captured
using circle-hook drumlines (details in Gallagher

merged platform, and a water pump was inserted
into the shark's mouth to facilitate ventilation. Once
sharks were secured, blood samples were obtained,
sex was identified (based on the absence of claspers
for females and presence for males), and morpho-
logical measurements were taken (e.g. total length,
cm). Finally, sharks were tagged for identification
and released.
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Blood (~20 ml) was collected from the caudal vein
using 18-gauge needles and 10 ml heparinized sy-
ringes and immediately centrifuged (410 x g, 2 min).
Plasma was then removed, placed in a cooler on the
boat and then stored frozen at -20°C for future
analyses.

2.2. Hormone analysis and reproductive status

The plasma concentrations of gonadal steroids (17f3-
estradiol and testosterone) and life stages of tiger
sharks were based on those determined by Suli-
kowski et al. (2016). In brief, both 17b-estradiol and
testosterone were measured by non-radiolabelled
steroid hormone (Steraloids) by radioimmunoassay,
following the procedure of Sulikowski et al. (2004).
A Tri-Carb 2900TR liquid scintillation analyzer (Per-
kinFlmer) was used to measure radioactivity (see Su-
likowski et al. 2016 for details). The mean intra-assay
coefficients of variation for testosterone and estradiol
were 10 and 6 %, respectively, and the inter-assay co-
efficients of variation were 10 % for both hormones.

Following Sulikowski et al. (2016), we considered
length at maturity for tiger sharks in the studied
region to be >300 cm total length (Branstetter et al.
1987, Whitney & Crow 2007) to distinguish immature
from adult/non-gravid females. For sharks captured
in 2011 in the Bahamas, the reproductive statuses of
adult females were determined using the gravidity
predicting model, which uses testosterone (mean
~250 pg ml™! for non-gravid and ~145 pg ml™! for
gravid females) and estradiol concentrations (mean
~200 pg ml™! for non-gravid and ~30 pg ml™ for
gravid females) (see details in Sulikowski et al. 2016).

For females sampled between 2012 and 2019, preg-
nancy status were assessed through ultrasonography
(Ibex Pro portable ultrasound, EI Medical Imaging;
with a 60 mm curved linear array 2.5 to 5 MHz trans-
ducer [model 290470]) of the reproductive tract of
each female shark (see Sulikowski et al. 2016). The
presence of follicles or pups in the uterus was used to
classify an individual as gravid or non-gravid.

2.3. Fatty acid analysis

Fatty acid profiles were analyzed in plasma and
whole blood (100 pl) by direct transmethylation, as
described by Parrish et al. (2015a). The samples were
homogenized and directly transmethylated in 3 ml of
methanol:dichloromethane:concentrated hydrochlo-
ric acid (10:1:1 v/v) solution for 2 h at 80-85°C. After

cooling, 1.5 ml of Milli-Q® water and 1.8 ml of
hexane and dichloromethane (4:1 v:v) were added
to the test tubes, and the tubes were then mixed
and centrifuged at 655.2 x g (5 min). The upper layer
was then removed and transferred to 2 ml injection
vials, and the volume was reduced under a nitrogen
stream. Fatty acid analysis was carried out in a Var-
ian gas chromatograph (GC, Model 3900, www.
varian.com) coupled with a flame ionization detector
and a CP-8410 autosampler, as described by Rangel
et al. (2019). The data are presented as % of total
fatty acid methyl esters based on peak area analyses.

2.4. Fatty acid trophic markers
and nutritional indicators

Fatty acids that accounted for <0.5% were ex-
cluded from statistical analyses. The essential fatty
acids, i.e. DHA, ARA and C20:5n3 (eicosapentaenoic
acid, EPA), and ARA/EPA and n3/n6 ratios were
used to compare the indices of shark nutritional sta-
tus (Tocher 2003, Arts & Kohler 2009) and to infer
physiological responses of eicosanoids (Tocher 2003).
In terms of trophic markers, DHA was used as a
marker of dinoflagellates, while C16:1n7/C16:0 was
indicative of diatoms (Budge et al. 2006). The DHA/
EPA ratio was used as a marker of trophic position, as
it has been significantly correlated with §°N (El-
Sabaawi et al. 2009, Sardenne et al. 2017), and the
C18:1n9/C18:1n7 ratio was a marker of the degree of
carnivory (Dalsgaard et al. 2003, Parrish et al.
2015b). Additionally, ARA and C18:2n6 values are
useful to indicate if a species inhabits coastal/benthic
environments (Sardenne et al. 2017), and odd-chain
fatty acids (OFAs) and branched-chain fatty acids
(BFAs) are biomarkers of heterotrophic bacteria
(Dalsgaard et al. 2003).

2.5. Data analysis

Linear regression was used to separately test for a
relationship between fatty acids (%) and body size
(i.e. total length) and between fatty acids (%) and re-
productive hormones 17B-estradiol and testosterone
(to assess changes during growth and reproduction).
Fatty acids, hormones and total length values were
log transformed before analysis to meet assumptions
of normality. Linear regression graphics were used to
show significant relationships between plasma and
whole-blood fatty acids (essential fatty acids and
trophic markers) with body size and hormones.
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Secondly, we compared fatty acids among life
stages (i.e. immature, non-gravid and gravid) to de-
scribe the stage-specific variation. Differences be-
tween fatty acid profiles across female life stages
were tested comparing each fatty acid using 1-way
ANOVA with a Tukey post hoc test to parametric
data. All data were tested for normality using the
Shapiro-Wilk test, and homogeneity of variance was
tested using Levene's test. If one of the assumptions
was violated, we used Kruskal-Wallis H-tests fol-
lowed by Dunn's post hoc test for non-parametric
data. Statistical significance was set at oo = 0.05. All
analyses were conducted in SigmaStat 3.10 (Systat-
Software) and PAST 3.12 (Hammer et al. 2001, www.
essential-freebies.de). Linear discriminant analyses
(LDAs) were performed separately for plasma and
whole blood to determine which combination of fatty

acids best discriminates between female life stages.
Multivariate analyses were conducted in PAST 3.12
(Hammer et al. 2001).

3. RESULTS

A total of 71 female tiger sharks were analyzed in
the present study: 17 females (255.5 + 33.7 cm total
length; mean + SD), 20 adult/non-gravid (345.2 =
26.5 cm), and 18 gravid females (340.56 + 22.7 cm).

The largest proportion of fatty acids in blood
plasma were the saturated fatty acids (SFAs), pre-
dominantly C16:0 and C18:0 during all life stages.
PUFAs, consisting of largely DHA and ARA, were in
the greatest percentages for non-gravid and gravid
females. However, monounsaturated fatty acids

Table 1. Comparative fatty acid profile of plasma and whole blood (%, mean + SD) among life stages (immature, adult non-
gravid, gravid) of female tiger sharks Galeocerdo cuvier; p-values for 1-way ANOVA with Tukey post hoc test for parametric
data and Kruskal-Wallis H-tests followed by Dunn's post hoc for non-parametric data. Significant (p < 0.05) results are shown
in bold. EPA: eicosapentaenoic acid; ARA: arachidonic acid; DHA: docosahexaenoic acid; SFA: saturated fatty acid; MUFA:
monounsaturated fatty acid, PUFA: polyunsaturated fatty acid; n3 (n6) PUFA: omega-3 (-6) PUFA; BFA: branched-chain fatty
acid; OFA: odd-chain fatty acid: NA: data not available (missing values). Superscript letters denote significant differences
among female life stages: immature, non-gravid and gravid (ANOVA, p < 0.05). *Non-parametric data (Kruskal-Wallis H-test)

Fatty acids Plasma Whole blood
Immature Non-gravid Gravid p Immature Non-gravid Gravid P
n=1%) (n=20) (n=18) n=9) (n=13) (n=12)

C15:0 24 +145 1.4 +£0.63 2+139 *0.053 NA NA NA NA
C17:0 0.9 +0.26 0.8 +0.29 0.9+027 *0.722 3.3+0.81*° 23+0.55" 25x0.81" 0.011
C15:1 NA NA NA NA 21+121 1.6+0.65 1.7 £ 0.64 0.409
BFA-OFA 3.2+1.50° 2.1+0.78° 2.8 £1.27% +0.032 53+188 42+1.11 50+1.18 0.157
C14:0 4.0+1.21 3.6 £1.06 3.5+0.85 0.722 1.9+0.51 23=+1.05 2.7+1.58 0.319
C16:0 31.0 £5.28 27.4+£566  26.9+5.59 0.062 28.8+2.32 29.6+4.33 29.2+3.92 0.529
C18:0 10.7 + 1.81° 9.6 £2.27° 9.1+1.67° *0.022 17.6 +1.54° 14.7 £2.28*> 15.7+1.95® 0.009
XSFA 46.9 £ 6.09° 41.7+7.77° 40.0+6.98° *0.017 49.8+245 49.4+7.05 492=+527 *0.887
C14:1 2.7 +0.89 3.0+ 1.51 32+1.31 *0.627 1.6 £0.77 2.0x0.88 2.1+0.79 0.484
C16:1n7 3.0+0.89 3.2+0.82 3.2+0.68 0.792 2.0+046 2.6+0.64 2.3+0.81 0.147
C18:1n9 18.3 +3.89 16.7 + 4.37 16.9 = 3.73 *0.321 224 +£256 21.4+290 227222 0.426
C18:1n7 2.5+0.97° 3.4 +0.96° 3.3+0.95° 0.014 41+1.00 43=+1.01 4.8+0.65 0.141
XMUFA 27.0 +4.42 27.5+4.68 27.3+4.82 *0916 304+201 31.2+371 32.8+x3.73 0.267
C18:2n6 3.3+1.01° 2.5 +0.86° 3.0 £ 1.57%  *0.031 25+062 1.9+0.35 2.7+1.84 *0.085
C20:5n3 (EPA) 1.6 = 0.66 2.1+0.93 1.6 + 0.77 0.220 1.0+£0.17 13+1.03 0.7 +0.18 0.202
C22:5n3 2.8 +0.89 2.3+0.78 2.5+0.76 0.302 1.7 £0.99 1+0.40 1.1 £0.60 0.174
C22:6n3 (DHA) 6.5 +4.20° 11.1 £ 5.81° 9.9+4.36° 0.022 25+086 57+6.23 33+x14 0.480
C20:4n6 (ARA) 7.7 + 3.60% 7.8+3.79° 10.7 +3.9 0.012 6.1+£2.09° 4.2x3.8° 4.6 £ 3.57% *0.109
C22:4n6 2.6 +1.34 1.6 +1.01 22+1.11 0.056 NA NA NA NA
C22:5n6 1.1+0.30 0.9+0.33 1.2+0.49 0.052 NA NA NA NA
YPUFA 24.0 £ 10.92® 28.7 £ 10.51®* 31.4+8.68" 0.042 13.7+3.22 1541059 12.0+6.72 0.262
> n3 PUFA 10.6 + 5.37¢ 16.0 + 8.11> 152+ 5.25°  0.038 46+233 8.3+7.07 5.1+145 0.383
X n6 PUFA 13.4 +£5.82% 127 +4.49° 16.1+6.06"  0.043 9.9+251 6.8+3.87 6.8+5.65 *0.069
n3/n6 0.8 +0.27% 1.3 +0.65" 0.9+041* *0.014 06+042 1.1+0.52 1.1+£0.85 *0.105
DHA/EPA 7.2 +3.94 6.7 +2.44 6.7 +2.82 0.575 26+140 4.6+224 4.4 +1.59 0.297
C16:1n7/C16:0 0.1 +0.02% 0.1 +0.03" 0.1+0.03> 0.013 0.1+0.02 0.1+0.02 0.1 +0.03 0.195
C18:1n9/C18:1n7 7.3 £2.15° 5.3 +1.84° 55+217°  *0.005 6.0+215 520091 4.7+049 *0.463
ARA/EPA 6.6 +2.56 5.5+4.03 8.1+3.68 *0.065 6.9+1.08 4.3+251 8.1+3.13 0.051
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(MUFAs), largely C18:1n9, were found in the highest
proportion for immature sharks (Table 1). Whole
blood was also largely comprised of SFAs followed
by MUFAs for all life stages (Table 1). Female size
influenced the composition of fatty acids (Tables 2 &
3), with DHA and n3/n6 ratios increasing with body
size in both plasma (Fig. 2c,e) and whole blood
(Fig. 2j,k). In contrast, plasma SFA decreased with
body size, including C16:0 and C18:0 (Fig. 2a,b,d),
while just C18:0 decreased in whole blood (Tables 2
& 3, Fig. 2i). In the plasma, a negative relationship
was also found between C15:0, C18:2n6, C22:4n6,
the bacterial marker (BFA-OFA) and the marker for
degree of carnivory (C18:1n9/C18:1n7 ratio) and
body size, and positive between C18:1n7 and the

Table 2. Linear regression models between plasma and whole-blood fatty
acids (%) and total length, and plasma levels of gonadal steroids (testosterone
and 17B-estradiol) in female tiger sharks Galeocerdo cuvier. Corresponding t-
and p-values are included. Bold: significant values (p < 0.05). EPA: eicosapen-
taenoic acid; DHA: docosahexaenoic acid; ARA: arachidonic acid. NA: data

not available (missing values)

diatom marker (C16:1n7/C16:0 ratio) and body size
(Tables 2 & 3, Fig. 2f-h). In the whole blood, C18:2n6
also increased and the C16:1n7/C16:0 ratio decrea-
sed with body size (Tables 2 & 3).

The plasma concentration of the gonadal steroid
hormone testosterone was negatively related with
plasma SFA, including C16:0 and C18:0 (Fig. 3a,b,d),
while C18:0 in whole blood was negatively related
with testosterone (Table 2, Fig. 3g). DHA and n3/n6
ratios increased with increasing 17f-estradiol in
plasma (Fig. 3c,e), while C18:2n6 decreased with
increasing testosterone (Tables 2 & 3). PUFA n3,
DHA, C14:1, C18:2n6 and the DHA/EPA ratio in
whole blood were negatively related with 17p3-estra-
diol, while C16:1n7 increased with 17B-estradiol and
EPA decreased with increasing testos-
terone (Tables 2 & 3, Fig. 3g—j). Plasma
bacterial marker (BFA-OFA), includ-
ing C15:0, C18:1n9/C18:1n7 and ARA/
EPA were negatively related with
testosterone. Plasma BFA-OFA, in-
cluding C15:0, also decreased with

Fatty Total length Testosterone  17B-estradiol mereasig 17ﬁ-ehstrad101, Wh.ﬂe whole
acids t P t p ¢ p blood BFA-OFA increased with testos-
terone (Tables 2 & 3).
C15:0 Plasma -2.053 0.045 -2.137 0.039 -2.457 0.019 Among life stages, plasma SFAs,
Whole blood -1.675 0.103  0.436 0.668 —0.637 0.532 immature than both non-gravid and
C14:0  Plasma -0.697 0.489 -1.289 0.205  0.459 0.649 ravid females (Table 1. Figs. 4 & 5
Whole blood ~ 0.141  0.889  0.285 0.779  1.174 0.256 gravi (  Figs. 4 & 5).
C16:0  Plasma ~2.705 0.009 -2.175 0.036 -0351 0728 | .1 whole blood, C18:0 was also higher
Whole blood -0.442 0.661  1.260 0.222  1.405 0.175 in immature compared to non-gravid
C18:0 Plasma -2.137 0.037 -3.335 0.002 -0.240 0.811 and gravid females (Table 1). Plasma
Whole blood -2.314 0.027 -2.431 0.025 -0.439 0.666 MUFA C18:1n7 was lower in imma-
Cl4:1c  Plasma 0.874 0386  0.214 0.832 -3.028 0.004 ture than both non-gravid and gravid
Whole blood 0.907 0.372 0.726 0.477 0.410 0.687 females (Table 1, Fig. 4b). Plasma
C16:1n7 Plasma 1.193 0.238  0.0238 0.981  0.884 0.382 total PUFAs were higher in gravid
Whole blood ~ 1.152 0.258 -0.577 0.570  2.916 0.009 .
compared to immature females, and
C18:1n9 Plasma -0.703 0.485 -0.835 0.409 -0.56 0.579 3 PUFAs  includi DHA
Whole blood -1.217 0.232 -0.250 0.805 -0.752 0.461 n TAS, ncuding . Were
C18:1n7 Plasma 4021 <0.001 1116 0271 0023 0982 | 1ower in immature than both non-
Whole blood  0.373 0.712 -0.721 0.479  0.352 0.728 gravid and gravid females (Table 1,
C18:2n6 Plasma -2.643 0.011 -2.748 0.009 -0.844 0.404 Figs. 4 & 5). Plasma n6 PUFAs were
Whole blood -2.763 0.01 -1.050 0.308 -2.464 0.024 hlgher in gravid Compared to non-
C20:5n3 Plasma 1.039 0.305 1411 0.169 -0.027 0.979 gravid females, while the coastal/
(EPA) Whole blood  0.149 0.883 -2.835 0.014  0.802 0.437 . .
benthic marker C18:2n6 was higher
C22:5n3 Plasma -1.155 0253  0.530 0.599  1.083 0.286 . ture th id shark
Whole blood -1.514 0.142 -0.292 0.775 -0.713 0.487 0 lmmature than non-gravid sharxs,
C22:6n3 Plasma 2.350 0.023 1332 0.191  2.103 0.042 and ARA was higher in gravid com-
(DHA) Whole blood ~ 2.552 0.016  1.134 0272 -2.127 0.048 pared to both immature and non-
C20:4n6 Plasma -0.084 0.933 -0.918 0.364  0.520 0.609 gravid females (Table 1, Figs. 4 & 5).
C22:4n6 Plasma -2.247 0.030 -0.989 0.330 -1.408 0.169 nutritional indicators, the plasma n3/
Whole blood -1.427 0.190 NA NA NA NA i . . .
n6 ratio was higher in non-gravid
C22:5n6 Plasma -0.789 0435  0.059 0.953 -1.203 0.239 d both i d
Whole blood -0.517 0.624 NA  NA NA NA compared to both immature an
gravid females (Table 1, Fig. 5e). In




Rangel et al.: Nutritional ecology of an apex predator 155

1.7
1.2 1
< 1.6 1 o
33 11 4
2 1.5 { e
N 210
014 8}
()] {o2] ]
313 . |3 os
°® 9 1 .
1o [R2=-0.35 08 . . R?=-0.33 .
(@) 22 23 24 25 26 (b) () 23 24 25 26 (d) 21222324252627
3.0 1.0 0.22 1.4
R2=0.33 R © 020 | RZ=0.43 e | . R2=-0.45
25 | ., =08 @ 1271 ™ .
* 1306 5 018 1 © NS
0201 Tl = 0.16 A Q40
c O 04 c [
»15 < w 0.14 4 £
c L 0.2 © 0121 508
1.0 1 @ 5 =
o 0.10 + N
09 - 2-2 R2 = -0.35 8o 2%° YA
-0.2 {R2=-0. .
00—~ . 006 L oo ® o4l — T
21 22 23 24 25 26 212223242526 27 22 23 24 25 26 22 23 24 25 26
(e) Log total length (cm)  (f) Log total length (cm) (g)  Log total length (cm) (h) Log total length (cm)
Whole blood
15 1.4 S 1.0
A 1o | R2=042 25 {R2=0.38 . R2=0.61 .
° \\g.\ ° . ' ’/
S = 2.0 1 //).n
o o 1.5 1 °« 7 =
O 0 .
g > 1.0 1 P e e
> €051 /e
(o] / °
=1 0.0 Ve ¢
R2=-0.37 o ' <
-05 0.0

23 24 25 26
Log total length (cm)

T22 23 24 25 26
Log total length (cm)  (I)

2.0 2:1 2:2 2:3 2:4 2:5 2:6
Log total length (cm) (k)

2.3 2:4 2:5 2:6
(i) Log total length (cm) ()

Fig. 2. Significant relationships between plasma and whole-blood fatty acids and total length for female tiger sharks Galeo-

cerdo cuvier. Solid black line: regression; dashed lines: 95 % confidence intervals. Numbers are log transformed. EPA: eico-

sapentaenoic acid; DHA: docosahexaenoic acid; SFA: saturated fatty acid; BFA: branched-chain fatty acid; OFA: odd-
chain fatty acid

plasma, the bacterial marker (BFA-OFA) was higher
in immature than non-gravid sharks (Fig. 6a), while
the diatom marker (C16:1n7/C16:0 ratio) was lower
in immature sharks compared to both non-gravid
and gravid females (Fig. 5g). The carnivory index
(C18:1n9/C18:1n7 ratio) was higher in immature
than both non-gravid and gravid females (Fig. 5h).
The plasma LDA revealed that the first 2 discrimi-
nant functions distinguished the life stages (Table A1
in the Appendix, Fig. 6a,b). The first function sepa-
rated immature and non-gravid females, mainly due
to differences in percentages of DHA, C16:0, PUFAs,
n3 PUFAs and SFA, while the second function sepa-
rated non-gravid and gravid females, including their
differences in ARA, C16:0, SFA, PUFAs and n6
PUFAs (Fig. 6a,b). From whole-blood fatty acids,
LDA revealed that the first 2 discriminant functions

distinguished the life stages (Table A1, Fig. 6¢,d).
The first function separated non-gravid and gravid
sharks from immature females, mainly due to the dif-
ferences in C18:0, DHA, n3 and n6 PUFAs and
MUFAs (Fig. 6¢,d). The second function separated
non-gravid from gravid females, due to their differ-
ences in DHA, C18:1n9, PUFAs, n3 PUFAs and
MUFAs (Table A1, Fig. 6¢,d).

4. DISCUSSION

Through analysis of short-term dietary markers,
our study revealed that the nutritional ecology of
female tiger sharks, which are generalist apex pred-
ators, varied across life stages. Non-gravid and gra-
vid females were characterized by higher percent-
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ages of plasma n3 PUFAs, including DHA, than
immature females, which exhibited higher plasma
SFAs, including C18:0, than both non-gravid and
gravid females. Additionally, gravid females exhib-
ited higher percentages of plasma ARA compared to
both immature and non-gravid individuals, demon-
strating the importance of n6 HUFAs during gesta-
tion. These findings support our first hypothesis that
females preparing to reproduce (i.e. adult, but non-
gravid) would exhibit greater percentages of HUFAs,
and thus better nutritional status (i.e. nutritional
composition). While our second hypothesis predicted
that gravid females would not be nutritionally defi-
cient in essential fatty acids, gravid females had
unexpectedly higher nutritional condition compared
to immature females. Corroborating our third hypo-
thesis, smaller females exhibited higher percent-

ages of benthic/coastal and bacterial markers in the
plasma, and differed in their trophic markers (e.g.
degree of carnivory).

4.1. Nutritional status during reproduction

Increased plasma HUFAs found in adult females,
together with a decrease in plasma SFAs, suggest
high dependence on HUFAs as a source of metabolic
energy for reproduction, whether through dietary
and/or non-dietary origin (e.g. mobilized from stor-
age tissues). Non-gravid and gravid females did not
differ in plasma DHA and n3 PUFA percentages.
However, higher values of the n3/n6 ratio found in
non-gravid females, together with the positive rela-
tionship between DHA and the n3/n6 ratio with
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Table 3. Linear regression models between plasma and whole-blood fatty acids

(%) and total length, and plasma levels of gonadal steroids (testosterone and

17B-estradiol) in female tiger sharks Galeocerdo cuvier. Corresponding t- and p-

values are included. Bold: significant values (p < 0.05). SFA: saturated fatty acid;

MUFA: monounsaturated fatty acid; PUFA: polyunsaturated fatty acid; EPA:

eicosapentaenoic acid; DHA: docosahexaenoic acid; ARA: arachidonic acid;
BFA: branched-chain fatty acid; OFA: odd-chain fatty acid

Fatty Total length Testosterone  17B-estradiol
acids t P t P t P
SFA Plasma -2.561 0.013 -2.180 0.036 -1.360 0.182

Whole blood -0.920 0.364 0.729 0.475 1.763 0.093

MUFA Plasma 1.507 0.138 0.404 0.688 -0.737 0.465
Whole blood -0.065 0.948 -0.181 0.858 -0.126 0.901

PUFA Plasma 1.210 0.232  0.822 0.416 1.315 0.196
Whole blood 0.670 0.508 -0.931 0.363 -1.813 0.085

n3 PUFA Plasma 1.053 0.297 1.087 0.284 1.870 0.069
Whole blood 1.320 0.196 1.056 0.304 -2.198 0.040

n6 PUFA Plasma 0.164 0.870 0.019 0.985 0.467 0.643
Whole blood 1.057 0.298 -1.017 0.321 -0.608 0.550

n3/n6 Plasma 2.539 0.014 2.694 0.010 2.464 0.018
Whole blood 2.068 0.047 0.399 0.694 -0.729 0.474

BFA- Plasma -2.672 0.010 -2.212 0.033 -2.123 0.040
OFA Whole blood 0.028 0.978 1.289 0.212 0.082 0.936
DHA/ Plasma 0.688 0.495 0.091 0.929 0.823 0.416
EPA Whole blood 3.281 0.004 1.618 0.134 -2.302 0.042
C16:1n?/ Plasma 3.434 0.001 1.252 0.218 1.000 0.324
C16:0  Whole blood 2.371 0.024 -0.973 0.342 1.544 0.138
C18:1n9/ Plasma -3.693 <0.001 -2.465 0.018 -0.198 0.844
C18:1n7 Whole blood -1.050 0.301 0.562 0.580 -0.762 0.455
ARA/ Plasma -0.957 0.344 -2.258 0.032 -1.208 0.237
EPA Whole blood -1.147 0.267 -0.544 0.599 -0.701 0.501
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Fig. 4. Boxplots of plasma individual fatty acids (%) in female tiger sharks Gale-

ocerdo cuvier at different life stages (left to rlght in panels: immature, adult non-

gravid, gravid); black line indicates the median value and black dots indicate

outliers. ARA: C20:4n6 (arachidonic acid); DHA: C22:6n3 (docosahexaenoic

acid). Significant differences among life stages are denoted with different
superscripts above bars (ANOVA, p < 0.05)

reproductive hormones, and the nega-
tive relationship between SFAs (in-
cluding C16:0 and C18:0) and testos-
terone, suggest that females consume
more omega-3-rich prey and/or allo-
cate additional omega-3 from storage
tissues during vitellogenesis. Addi-
tionally, we observed a negative rela-
tionship between reproductive hor-
mones and whole-blood n3 PUFAs,
including DHA and EPA, suggesting
some allocation of n3 HUFAs from
blood cells. Evidence from previous
studies show that non-gravid females
have higher relative corticosteroid
levels than both immature and gravid
individuals (B. Rangel, N. Hammer-
schlag, J. Sulikowski, R. Moreira un-
publ. data), and a coincident elevation
in body condition and plasma triglyc-
erides (Hammerschlag et al. 2018).
These findings suggest that non-
gravid females may increase food in-
take and allocation of energy stored.
During the energetically costly pro-
cess of vitellogenesis, n3 HUFAs are
allocated to the ovary through vitel-
logenin, a lipophosphoglycoprotein
rich in DHA, synthesized in the liver
under the control of 17B-estradiol
(Reading et al. 2017). The importance
and selective use of n3 HUFAs in the
reproductive processes is well de-
scribed in other vertebrates, as they
affect many important physiological
processes, such as brain and eye de-
velopment and immune and inflam-
matory responses (Izquierdo et al.
2000, Tocher 2010, Gladyshev et al.
2017, Twining et al. 2018), but in
sharks a comparable understanding
relating to this process is still limited.

The high plasma ARA percentages
found in gravid tiger sharks suggest
the possibility of a selective diet on
ARA-rich prey species and/or selec-
tive mobilization from stored energy.
It is also possible that ARA is trans-
ferred from mother to offspring during
gestation (Iverson et al. 1995), since
this omega-6 plays a critical role in
embryo development, including im-
mune and inflammatory responses
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for gonadogenesis (Uysal & Aksoylar
2005, Manor et al. 2012). Previous
findings comparing energetic hormo-
nes across life stages in female tiger
sharks suggest increased catabolism
related to growth and reproductive

Immature| , Non-gravid '

Fig. 5. Boxplots of plasma fatty acid sums (%) and ratios in female tiger sharks
Galeocerdo cuvier at different life stages (left to right in panels: immature,
adult non-gravid, gravid); black line indicates the median value and black
dots indicate outliers. SFA: saturated fatty acid; MUFA: monounsaturated fatty
acid; PUFA: polyunsaturated fatty acid; n3: omega 3; n6: omega 6; BFA:
branched-chain fatty acid; OFA: odd-chain fatty acid. Significant differences
among life stages are denoted with different superscripts above bars

(ANOVA, p < 0.05)

(Arts & Kohler 2009, Gladyshev et al. 2017) and
improving growth, survival and stress resistance
(reviewed by Tocher 2010). Previous studies of mar-
ine migratory species have reported an increase in
ARA (molecules that originate in coastal areas) found
in tissues during reproduction (e.g. gray whale, Car-
aveo-Patino et al. 2009; tuna, Sardenne et al. 2017),
suggesting a relationship with migration patterns
during seasonal breeding. Large female tiger sharks
(>270 cm total length) in the study region exhibit
seasonal migrations to coastal inshore areas of the
subtropics, during cold months, including an area in
the Bahamas nicknamed ‘Tiger Beach," which is uti-
lized during gestation by female tiger sharks in the
study region (Hammerschlag et al. 2012, Sulikowski
et al. 2016). As this geographic area is rich in ARA,
the primary component of mucus and algae in coral
reefs in the Caribbean (van Duyl et al. 2011), it is pos-
sible that, in addition to offering refuge habitat in

Gravid

maturation in immature female tiger
sharks (B. Rangel, N. Hammerschlag,
J. Sulikowski, R. Moreira unpubl.
data), corroborating this hypothesis,
as SFAs and MUFAs are the main fatty
acids catabolized for energy (Tocher
2003).

Collectively, our results demon-
strated that dietary quality of females
differed across life stages, likely either
by consuming or by selectively storing
and allocating specific fatty acids, and
that this variation can be related to growth and
reproductive processes. If tiger sharks relied only on
energy stored for reproduction, we would have
expected to find high percentages of SFAs in gravid
females, as SFAs tend to be catabolized for energy
and PUFAs are normally conserved (Tocher 2003),
but this was not the case. Consistent with our
hypotheses, our data suggest that gravid females
likely require dietary n3 and n6 HUFAs, corroborat-
ing a previous hypothesis of a mixed capital-income
breeding strategy for tiger sharks, in which females
forage during gestation (Hammerschlag et al. 2018).
Future research should investigate the diet prefer-
ences and fatty acid profiles of potential prey items
across all life stages of female tiger sharks to confirm
our findings (Fig. 1). The reproductive cycle for tiger
sharks in our study region remains unclear, whereas
it was found to be biennial in the North Atlantic (Cas-
tro 2009) and triennial in Hawaiian tiger sharks
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(Whitney & Crow 2007); thus, additional studies on
temporal changes in reproductive status will help to
elucidate energetic requirements in each stage.
Additionally, determining which fatty acids are
transferred to offspring, e.g. by investigating neo-
nates (Belicka et al. 2012, Wai et al. 2012, Rangel et
al. 2020), would help to clarify the nutrients required
for reproduction.

4.2. Trophic markers and ontogenetic shifts
in the diet

The comparison of size-based fatty acid profiles
indicated that larger tiger sharks spent more time
foraging in offshore pelagic habitats, whereas imma-
ture females showed markers of benthic/coastal
areas, corroborating our third hypothesis. This was
evident in the decrease of plasma n6 PUFAs, includ-

ing C18:2n6 and C22:4n6, and bacterial detrital
markers (BFAs and OFAs), and an increase in DHA
and n3/n6 ratio with body size. Additionally, whole-
blood n6 PUFAs largely separated immature from
both non-gravid and gravid females in the LDA. For
example, C18:2n6 is characteristic of terrestrial and
freshwater sources (mangroves and terrestrial plants,
Kelly & Scheibling 2012), n3/n6 ratios are indicative
of marine resources, and DHA is characteristic of
marine food webs based on dinoflagellates (Parrish
2013, Meyer et al. 2019). Our result is further sup-
ported by other studies on the foraging ecology of
tiger sharks, in which higher proportions of prey typ-
ical of inshore and shallow habitats, e.g. mollusks
(Gulf of Mexico and Atlantic Ocean, Aines et al.
2018), batoids and benthic octopus species (South
African waters, Dicken et al. 2017) indicated a high
dependence of benthic/coastal nutrients at this life
stage.
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As tiger sharks grow, larger prey become more
important in their diet, including reptiles, birds and
marine mammals (e.g. Dicken et al. 2017, Aines et al.
2018, Salinas-de-Leo6n et al. 2019). Evidence for in-
creasing trophic position was only evident in the
whole-blood DHA/ARA ratio, which was positively
correlated with body size. The DHA/ARA ratio is
positively correlated with stable isotopes of nitrogen
and trophic level in a variety of animals, including
other marine predators and mesopredators (e.g. Car-
dona et al. 2015, Sardenne et al. 2017, Rangel et al.
2020). This is because DHA is biomagnified and pref-
erentially retained at higher trophic levels (Dals-
gaard et al. 2003). On the other hand, the C18:1n9/
C18:1n7 ratio (carnivory/piscivory index), another
typical trophic position marker (Dalsgaard et al.
2003), decreased with increasing body size and was
higher in immature than in both non-gravid and
gravid females. A lower carnivory index and higher
values of the C16:1n7/C16:0 ratio (a diatom marker)
found in larger females can be a result of their
increased foraging on turtles and mammalian prey
(e.g. mysticete whales that feed on small inverte-
brates situated at low trophic levels), as suggested for
tiger sharks in South Africa (Dicken et al. 2017). For
example, Cardona et al. (2015) found that logger-
head turtles and some marine bird species had a
diatom-based diet; moreover, C16:1n7 is higher in
coastal herbivores and is found in high levels in the
blubber of marine mammals (Beck et al. 2005, Wai et
al. 2011). As large tiger sharks consume highly mo-
bile species (e.g. turtles and whales, Dicken et al.
2017), it is possible that differences found here
among life stages may also be influenced by prey
species habitat use. Therefore, future studies should
consider the influence of the fatty acid profiles of
potential prey species.

5. CONCLUSION

Our findings suggest that, despite their generalist
and opportunistic feeding behavior, tiger sharks feed
on different food sources and/or modulate their fatty
acid metabolism differently across growth and repro-
ductive periods, suggesting some adjustment in their
nutritional requirement. Our results indicate that
during life stages that carry high energetic demands
(i.e. vitellogenesis and gestation), females require a
diet consisting of n3 and n6 HUFAs. Our results also
demonstrated that, although plasma seems to be bet-
ter for distinguishing diet patterns and nutritional
status, whole-blood fatty acids can provide valuable

insights into aspects of feeding ecology. Taken to-
gether, plasma and whole-blood fatty acids suggest
differences in trophic ecology across life stages and
ontogenetic shifts in diet. Our results further confirm
a high dependence of tiger sharks on coastal/benthic
food resources during younger stages, and more
pelagic/oceanic and reef-associated food resources
during adult stages, especially during reproduction
(vitellogenesis and gestation). Such knowledge is
particularly important in areas highly used by tiger
sharks, such as feeding areas or gestation and nurs-
ery grounds, where individual females depend on
shared food resources (e.g. as reported in mammals,
Stockley & Bro-Jergensen 2011). This study expands
our limited knowledge of the food quality and life
stage variation in a generalist marine apex predator.
The results also highlight the importance of consider-
ing specific life stage classifications when studying
the trophic and functional ecology of sharks, as the
energetic requirement and composition of fatty acids
can vary substantially across life stages. Future stud-
ies should address if tiger sharks, despite being a
generalist/opportunist species, can feed selectively
according to the nutrient content of prey during
reproduction and how prey quality can affect their
reproductive performance. Finally, we present a con-
ceptual model (Fig. 1) summarizing our findings into
testable predictions to aid future investigations on
the nutritional ecology of tiger sharks, as well as
other apex predators.
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APPENDIX

Dunedin, New Zealand

Table Al. Additional data on linear discriminant functions of
fatty acid profiles between life-stages (immature, non-gravid
and gravid) for the 2 first axes (Fig. 6). Bold values indicate
primary fatty acids contributing to dissimilarity. EPA: eicos-
apentaenoic acid; DHA: docosahexaenoic acid; ARA: arachi-
donic acid; BFA: branched-chain fatty acid; OFA: odd-chain
fatty acid; SFA: saturated fatty acid; MUFA: monounsaturated
fatty acid; PUFA: polyun-saturated fatty acid; NA: data not
available (missing values)

Fatty acids Plasma Whole blood
Axis1 Axis 2 Axis 1 Axis 2
C14:0 0.12 -0.12 -0.14 0.09
C15:0 0.30 0.08 NA NA
C15:1 NA NA 0.07 0.03
C17:0 0.01 0.01 0.22 0.05
C16:0 1.19 -0.93 -0.15 -0.10
C18:0 0.37 —-0.46 0.58 0.20
C14:1 -0.10 0.16 -0.09 0.03
C16:1n7 -0.06 0.01 -0.11 -0.06
C18:1n9 0.51 -0.25 0.10 0.34
C18:1n?7 -0.29 0.14 -0.11 0.15
C18:2n6 0.24 0.07 0.08 0.19
C20:5n3 (EPA) -0.11 -0.09 -0.01 -0.10
C22:5n3 0.13 -0.03 0.11 0.01
C22:6n3 (DHA) -1.44 0.37 -0.46 -0.56
C20:4n6 (ARA) -0.13 1.32 0.36 0.09
C22:4n6 0.27 0.07 NA NA
C22:5n6 0.06 0.08 NA NA
YXBFA-OFA 0.33 0.07 0.18 0.20
XSFA 1.48 -1.68 0.11 -0.04
IMUFA -0.16 -0.02 -0.36 0.42
YXPUFA -1.54 2.52 -0.04 -0.86
¥ n3 PUFA -1.73 0.62 -0.54 -0.75
¥ n6 PUFA 0.19 1.68 0.68 -0.02
n3/n6 -0.16 -0.07 -0.15 0.11
DHA/EPA -0.17 0.25 -0.18 -0.02
C16:1n7/C16:0 -0.01 0.01 0.00 0.00
C18:1n9/C18:1n7 0.98 -0.48 0.24 -0.12
ARA/EPA 0.25 0.82 0.16 0.50
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