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Abstract  Reef-building corals host diverse dinoflagellate 
algal symbionts (Family Symbiodiniaceae) whose iden-
tity can influence host thermotolerance and whose relative 
abundance can be dynamic. Breakdown in this symbiosis 
during “bleaching” events can promote changes in symbi-
ont communities in favour of thermotolerant types, particu-
larly in the genus Durusdinium. We employed experimental 
bleaching to manipulate the symbiont communities of three 
common Caribbean reef-building species (Montastraea cav-
ernosa, Orbicella faveolata, and Siderastrea siderea) and 
tested whether seasonal differences in the corals’ symbiont 
communities at the time of their collection affected their 
responses to manipulation. In O. faveolata and S. siderea, a 
minimum threshold of initial background proportion Durus-
dinium trenchii shaped recovery from bleaching with mainly 
Durusdinium. In contrast, in M. cavernosa, Durusdinium 
became highly dominant after recovery even when it was 
undetectable prior to bleaching. Seasonal changes were 
also detected in M. cavernosa and S. siderea dominated 
by Cladocopium, with significant increases and decreases, 
respectively, in symbionts per host cell in October (following 
annual temperature maxima) compared to the previous April 

(following temperature minima). These results demonstrate 
how background symbionts and seasonal differences in sym-
biont density can affect the disturbance and recovery dynam-
ics of algal symbiont communities in different coral species, 
and prompt further research into how seasonal changes in 
algal symbiosis might inform projected future bleaching, 
which is increasingly relevant in light of predicted winter 
warming and prolonged warm summer temperatures under 
climate change.

Keywords  Coral bleaching · Symbiodiniaceae · Symbiont 
shuffling · Durusdinium trenchii · Thermotolerance · qPCR

Introduction

Coral reef bleaching is defined as the loss of photosynthetic 
algal symbionts (Family Symbiodiniaceae), or their pig-
ments, from reef-dwelling invertebrate hosts (Glynn 1996; 
LaJeunesse et al. 2018). This dysfunctional symbiosis (‘dys-
biosis’, Palmer 2018) is typically driven by oxidative stress 
caused by photoinhibition of the algal symbionts usually as a 
result of sustained periods of anomalously high temperature, 
(Smith et al. 2005; Gustafsson et al. 2014), but can be modu-
lated by the capacity of the coral host to reduce or mitigate 
that stress (Berkelmans and van Oppen 2006; Baird et al. 
2009). Heat-induced bleaching is now the principal driver of 
scleractinian coral (‘coral’ hereafter) mortality worldwide, 
because bleaching events are becoming more frequent and 
more intense (Hughes et al. 2018). Annual severe bleaching 
is projected on 90% of the world’s coral reefs by 2055 (van 
Hooidonk et al. 2014) as rising sea surface temperatures 
increase the duration and frequency of marine heatwaves 
(Oliver et al. 2018; Fordyce et al. 2019). Exploring the driv-
ers of thermal tolerance and potential for recovery of these 
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symbioses following bleaching is therefore of paramount 
importance for the future of coral reefs.

Adults of some coral species can be flexible in their sym-
biotic associations, often hosting multiple different sym-
bionts simultaneously (Baker 2003; Putnam et al. 2012; 
Ziegler et al. 2015), generally including a small number 
of high abundance taxa and a diversity of putative species 
at very low abundance (constituting less than 1% of the 
symbiont community) (Boulotte et al. 2016; Ziegler et al. 
2018). At the broader genus level, ‘background’ may refer 
to any minority genus or more specifically those constitut-
ing less than 5–20% of the assemblage (Mieog et al. 2007; 
Silverstein et al. 2012). The loss of symbionts during bleach-
ing may provide an opportunity for corals to recover with 
different symbiont communities (Buddemeier and Fautin 
1993; Baker 2003), as a result of the proliferation of resid-
ual symbionts that remain in bleached coral tissue and/or 
the uptake of exogenous symbionts (typically referred to as 
‘shuffling’ and ‘switching’ respectively, (Buddemeier and 
Fautin 1993; Baker 2003; Silverstein et al. 2012). Residual 
symbionts may include background symbionts even if their 
initial abundance prior to bleaching was very low (< 1%), 
presenting an opportunity for these populations to shift to 
dominance with associated increased functional importance 
to the holobiont; indeed, Acropora millepora hosting at least 
0.3% Durusdinium generally became dominated by Durus-
dinium and suffered milder bleaching under heat stress com-
pared to those hosting less than 0.3% Durusdinium (Bay 
et al. 2016). Because different Symbiodiniaceae can confer 
different phenotypes (e.g., thermal tolerance) to their hosts 
(Berkelmans and van Oppen 2006; Swain et al. 2017), these 
symbiont shifts can be of critical importance to the survival 
and persistence of individual colonies, and occasionally 
entire reef systems (Baker et al. 2004; Thornhill et al. 2006; 
LaJeunesse et al. 2009; Kemp et al. 2014; Claar et al. 2020; 
Palacio-Castro et al. 2023).

Algal symbiont communities can also undergo seasonal 
changes in composition independently of bleaching (Chen 
et al. 2005; Ziegler et al. 2015), for example summertime 
increases in the relative abundance of Durusdinium in Lep-
toria phrygia in Taiwan (Huang et al. 2020) and transient 
increases in the proportion of Durusdinium trenchii in the 
summer leading up to an autumn bleaching event (LaJeu-
nesse et al. 2009), with communities generally reverting 
to their pre-disturbance composition over months to years 
in the absence of further heat stress (Thornhill et al. 2006; 
LaJeunesse et al. 2009).

In addition to differences in the identity of symbionts, 
total symbiont densities in corals also undergo seasonal 
fluctuations. Multi-year studies of Caribbean and Indo-
Pacific coral species have shown increases in symbiont 
density and/or photochemical efficiency (Fv/Fm) during 
winter, and decreases during the summer. Summertime 

decreases occur independently of any visible signs of 
bleaching, suggesting an acclimatisation response to lower 
temperature and irradiance during the winter (Stimson 
1997; Fagoonee et al. 1999; Fitt et al. 2000; Warner et al. 
2002; Thornhill et al. 2011). Higher symbiont densities 
have also been implicated in decreased thermal tolerance, 
potentially due to carbon limitation of photosynthesis 
(reduced autotrophic capacity) (Wooldridge 2009, 2016), 
and/or increased production of reactive oxygen species in 
response to stress (Weis 2008; Cunning and Baker 2013). 
In fact, symbiont to host cell ratios may be useful proxies 
that contextualise symbiont density with respect to host 
tissue biomass (Cunning and Baker 2014). Thus, the first 
aim of the current study was to study the effects of sea-
sonal changes on symbiont to host cell ratio and commu-
nity composition.

The second aim was to investigate how seasonal changes 
in algal symbiont communities affected their ability to 
recover with different symbionts following bleaching. 
Although many factors, such as coral species (Goulet 2006; 
Baker and Romanski 2007), duration of heat stress, and 
recovery temperature (Cunning et al. 2015), have been tested 
in assessing the tendency for corals to change symbionts 
following bleaching, to our knowledge the effect of back-
ground symbionts in driving these changes has thus far only 
been reported in the Indo-Pacific species Acropora millepora 
(Bay et al. 2016). Competition studies between Durusdinium 
and other common genera inside octocoral hosts have sug-
gested that population sizes following disturbance affect 
competitive outcomes between symbionts, with priority 
effects facilitating the initial proliferation of Durusdinium 
under stressful environmental conditions before they are 
excluded by photochemically superior competitors (McIl-
roy et al. 2019). However, these hypotheses have never been 
empirically tested and consequently, the question of whether 
seasonal changes in the abundance or proportion of Durus-
dinium affect the propensity for later shuffling/switching 
may be key to understanding recovery trajectories of corals 
following bleaching events.

Here, we compared seasonal differences in symbiont to 
host cell ratio and the proportion of Durusdinium trenchii 
in three common Caribbean reef-building coral species in 
Florida following annual temperature minima and maxima. 
We then subjected these corals to experimental bleaching 
and tested whether seasonal differences in algal symbiont 
communities affected the proportion of Durusdinium with 
which corals recovered following bleaching. Given the pro-
jected increase in long-lasting marine heatwaves that persist 
over multiple seasons (van Hooidonk et al. 2020; Cooley 
et al. 2022), and the increasingly important role of heat-tol-
erant (and often background) symbionts in warming oceans, 
developing our understanding of seasonal variation in sym-
biont community dynamics and the role of background 
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symbionts following bleaching and recovery may be of criti-
cal importance in understanding reef futures.

Materials and methods

Colony selection and core collection

To select colonies for study, we pre-screened samples from 
54 colonies (all > 30 cm in diameter) of Montastraea caver-
nosa, Orbicella faveolata, and Siderastrea siderea at depths 
of 7.5–8.5 m depth from Emerald Reef (25.406 to 25.407 
N, 80.058 to 80.060 W), off Key Biscayne, SE Florida, 
USA. We characterised the algal symbiont communities 
in each colony (see DNA extraction and analyses, below), 
and selected the 10 colonies of each species containing 
no detectable Durusdinium, or failing that, containing the 
lowest proportions of Durusdinium (30 colonies in total). 
Although genotypes were not explicitly identified in this 
study, selected colonies were at least 5 m apart to decrease 
the chances of sampling clonemates (Baums et al. 2006). 
From each colony, two cores, each 2.5 cm diameter and 2 cm 
deep, were removed using a submersible drill (Nemo Power 
Tools Ltd.) fitted with a diamond core drill bit (Montana 
Brand Tools). To standardise irradiance and minimise vari-
ation in symbiont communities due to intra-colonial niche 
partitioning (Rowan et al. 1997), cores (N = 60 in total) were 
only extracted from the uppermost surfaces of colonies. 
Holes in colonies resulting from coring were filled with a 
two-part epoxy putty to promote healing. Cores were col-
lected in March–April 2019 (hereafter referred to as the 
‘April’ batch), and another set of 60 cores was collected 
from the same 30 colonies in October 2019 (referred to as 
the ‘October’ batch).

Laboratory maintenance of corals

Cores were attached to ceramic plugs using cyanoacrylate 
‘Reef Glue Gel’ (Boston Aqua Farms) and from each batch 
of 60 cores, 1–2 cores of each colony (N = 45 cores total, 
across 3 species) were assigned to the bleaching treatment, 
and the remaining 5 cores of each species (N = 15 total) 
were used as non-bleached controls (Table S1). Mounted 
cores were maintained in plastic egg-crates in ~ 300L indoor, 
flow-through, fibreglass tanks in the Marine Technology and 
Life Science Seawater (MTLSS) complex at the University 
of Miami’s Rosenstiel School of Marine, Atmospheric, and 
Earth Science, supplied with seawater at 27 °C (+ / − 1 °C) 
from nearby Bear Cut that had been sand-filtered to 10 
microns (which removes larger particles but not Symbiod-
iniaceae (Littman et al. 2008)). The 45 heat-stressed cores 
from each batch were kept in one tank and the 15 control 
cores in another, with cores rotated within tanks during each 

weekly cleaning to reduce any potential confounding effects 
of tank position. This experimental design was chosen in the 
knowledge that cores would be exposed to viable exogenous 
Symbiodiniaceae cells both in the filtered seawater supplied 
to aquaria, and via the continual release of Symbiodiniaceae 
from other corals in the same aquarium (Yamashita et al. 
2011). For this reason, the origin (exogenous or endogenous) 
of recovered symbiont populations cannot be resolved here 
but this remains tangential to the conclusions of this study.

Two 500 gph pumps were used to circulate water within 
each tank, and corals were maintained on a 12  h:12  h 
light:dark cycle using three Hydra 52HD lights (Aqua Illu-
mination, C2 Development Inc.) at 20% intensity across all 
wavelengths, which delivered approximately 125 µmol pho-
tons m−2 s−1 PAR, measured using an Apogee MQ-210X 
light meter) across each tank. Corals were fed twice weekly 
with 4 g of resuspended zooplankton and phytoplankton 
(‘Reef-Roids’, Polyplab, Kansas USA).

Heat stress

After 3–5 weeks of acclimation to laboratory conditions, 
experimental cores were exposed to a heat stress protocol. 
On day 1 of heat stress, the temperature was raised (using 
in-tank heaters) to 32  °C; this rapid temperature ramp 
rate followed previous methods for successful symbiont 
manipulations in these species (Cunning et al. 2015). After 
15 days of heat stress at 32 °C (+ / − 0.5 °C), photochemi-
cal efficiency measurements were taken using an imaging 
pulse amplitude modulated (I-PAM) fluorometer (Walz, 
Effeltrich, Germany). Corals were dark-adapted for 30 min 
(Warner et al. 2002), then received a saturating pulse at 
2,800 µmol photons m−2 s−1 at 460 nm for 800 ms. The 
maximum quantum yield of symbionts’ PSII was quantified 
as Fv/Fm (Warner et al. 1996). I-PAM measurements were 
always taken in the early evening to control for diel varia-
tion in photochemical efficiency (Warner and Berry-Lowe 
2006). After 15 days, if Fv/Fm was either < 0.25 or < 50% of 
the coral’s pre-heat stress Fv/Fm, corals were placed into a 
glass ‘recovery’ aquarium within the fibreglass tank, which 
was maintained at a sub-bleaching but warm temperature of 
29 °C (+ / − 0.5 °C) to promote shifts towards Durusdinium 
dominance (Cunning et al. 2015). Corals that maintained 
Fv/Fm values above these thresholds were maintained under 
heat stress, and I-PAM measurements were taken every two 
days until Fv/Fm thresholds were met. After 25 days (April 
batch) or 22 days (October batch) of heat stress, the tempera-
ture was raised to 33 °C (+ / − 0.5 °C) to induce sufficient 
Fv/Fm declines in any remaining corals. In total, the mean 
Degree Heating Weeks (DHW) to which all heat-stressed 
corals were exposed (Liu et al. 2014)) was 8.6 DHW (April 
batch) and 9.8 DHW (October batch).
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During this controlled bleaching protocol, small (~ 2 mm 
diameter) tissue biopsies were preserved in 1% SDS (sodium 
dodecyl sulphate) in DNAB (Baker and Cunning 2016) at 
four time points: ‘Before heat stress’ (cores of both treat-
ments were sampled just before the onset of heat stress), 
‘After heat stress’ (experimental cores were sampled when 
they were removed from heat stress and control cores were 
sampled when heat stress had ended for all cores), ‘1 month 
recovery’ (bleached cores were sampled one month after 
they had been taken out of heat stress), and ‘2 month recov-
ery’ (all cores were sampled at the end of the experiment, on 
average one month after the ‘1 month recovery’ sampling).

DNA extraction and analyses

Aliquots of tissue samples were subjected to a modified 
organic extraction protocol (Baker et al. 1997) and quan-
titative PCR was performed using Taqman Environmental 
Master Mix (QuantStudio 3, Applied Biosystems) and sym-
biont genus-specific primers and probes targeting the actin 
gene (Cunning and Baker 2013; Cunning et al. 2015). To 
date, the only species of Durusdinium that has been reported 
in the Caribbean and western Atlantic is D. trenchii (Correa 
et al. 2009; Pettay et al. 2015) but we specify Durusdinium 
to the genus level in the figures presented in order to main-
tain consistency with other symbiont genera (of which there 
are multiple local species (LaJeunesse 2002)). VIC dye was 
used for the Cladocopium probe, whilst all other probes used 
a FAM dye. Cladocopium and Durusdinium targets were 
multiplexed together in the same well. Data were corrected 
for differences in DNA extraction efficiency, actin gene copy 
number, and dye fluorescence (Table S2) using the stepOneR 
package (Cunning 2018). Amplifications were filtered to 
include only those in which both technical replicates ampli-
fied with Ct values < 40.

Whilst the use of genus-level qPCR-based assays does 
not allow for finer-scale symbiont identification, these meth-
ods were used in this study to rapidly and cheaply quantify 
changes in the relative abundances of symbiont genera, in 
particular of Durusdinium, for which there is only one spe-
cies (D. trenchii) present in the western Atlantic (Pettay et al. 
2015). Other studies have estimated very high sensitivities of 
qPCR methods for detecting the presence of extremely rare 
‘background’ Durusdinium at proportions as low as 0.003%, 
albeit using multicopy target loci ( Mieog et al. 2007; Correa 
et al. 2009).

Statistical analyses

Data were analysed in RStudio V4.2.1 (R Core Team 
2022). Linear mixed effects models with colony as a ran-
dom effect, and batch and proportion Durusdinium as fixed 
effects, were fit to pre-heat stress S:H data using the ‘lme4’ 

package (Bates et al. 2015). Generalised mixed effects mod-
els with binomial error distributions, including colony as a 
random effect and the pre-heat stress proportion of Durus-
dinium, were fit to the post-heat stress proportion of Durus-
dinium (with batch included as an additional fixed effect in 
some models), also using the ‘lme4’ package (Bates et al. 
2015). Parameter estimates and associated confidence inter-
vals were estimated from mixed effects models using the 
‘emmeans’ package (Lenth 2022), whilst the significance of 
fixed effects in models was tested using partial F-tests in the 
‘lmerTest’ package (Kuznetsova et al. 2017).

By fitting a predictive quasibinomial model of the pro-
portion Durusdinium hosted after heat stress relative to the 
initial proportion Durusdinium hosted, a shuffling met-
ric was derived to represent the magnitude of shuffling to 
Durusdinium, following Cunning et al. (2018). No Durus-
dinium were detected in any M. cavernosa cores before heat 
stress, so this shuffling metric was calculated as the change 
in the proportion of Durusdinium. It should be restated that 
although shifts in symbiont assemblages are described here 
using a ‘shuffling metric’, the origins of recovered symbionts 
(endogenous symbiont population growth via ‘shuffling’ or 
uptake of exogenous symbionts via ‘switching’) cannot be 
disentangled. All data and statistical analyses are available 
at github.com/DaisyBuzzoni/seasonal_shuffling.

Results

Symbiont communities differed between April 
and October

The mean number of symbionts per coral cell (S:H ratio) 
increased in Montastraea cavernosa between April 2019 
(after the seasonal temperature minimum in January/Feb-
ruary) and October 2019 (after the seasonal maximum in 
August/September) (t = 3.78, p = 0.0008), decreased in S. 
siderea colonies (t =  − 3.99, p = 0.0005), and did not change 
significantly in O. faveolata (t =  − 1.10, p = 0.284) (Fig. 1b). 
The increase in S:H observed in M. cavernosa represents an 
increase in Cladocopium symbionts (since no Durusdinium 
were present), yet the decrease in S:H between April and 
October in S. siderea corals varied depending on dominant 
symbiont genus (significant April/October * symbiont genus 
interaction, t = 3.09, p = 0.005); Fig. 1b indicates that the 
decrease in S:H in S. siderea from April to October was 
driven more by colonies that consistently hosted Clado-
copium, than by those consistently hosting Durusdinium. 
However, this seasonal decrease in S:H in S. siderea colonies 
dominated by Cladocopium did not translate to a signifi-
cant change in Cladocopium:Durusdinium when consider-
ing all S. siderea colonies, including those hosting mixed 
communities; no change was detected in the proportion of 



Coral Reefs	

1 3

Durusdinium in cores of M. cavernosa (z = 0, p = 1), O. fave-
olata (z = 1.19, p = 0.235) or S. siderea (z = 1.69, p = 0.091) 
between April and October (Fig. 1c).

Shifts in favour of Durusdinium depend on coral species 
but not on season

The proportion of Durusdinium before bleaching and after 
recovery differed between coral species (Figs. 1c and 2) 
(when corals collected in April and October were pooled due 
to minimal seasonal changes in proportion Durusdinium, 
Fig. 1b). The shuffling index for experimental corals after 
two months of recovery (where a value of 1 indicates shuf-
fling to complete Durusdinium dominance) was 0.927 for M. 
cavernosa, 0.938 for O. faveolata and 0.760 for S. siderea 

(Fig. 3a). For corals not subjected to heat stress (controls), 
shuffling indices (where a value of 0 indicates no change 
in community composition) were 0.009, 0.017 and − 0.170 
for M. cavernosa, O. faveolata and S. siderea, respectively. 
There was no significant difference in the magnitude of shuf-
fling between April and October for M. cavernosa (t = 1.668, 
p = 0.107), O. faveolata (t = 0.415, p = 0.683), or S. siderea 
(t = 0.029, p = 0.977), (Fig. S1).

Initial presence or minimum proportion 
of Durusdinium drives magnitude of symbiont shifts, 
depending on coral species

By the end of heat stress, some shuffling towards Durus-
dinium had already occurred in O. faveolata and S. siderea, 
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Fig. 1   Seasonal differences in initial symbiont communities. a 
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(Onset Computer Corporation) deployed on the reef from August-
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but not in M. cavernosa (Fig. 3a) (excluding one M. cav-
ernosa colony which hosted no detectable Cladocopium at 
the end of heat stress, Fig. 3c). Fig. S2b indicates that S:H 
only recovered after two months of recovery (and partially 
recovered after one month in S. siderea), suggesting symbi-
ont shuffling after heat stress represents differential symbiont 
loss rather than symbiont recovery. However, despite the 
delay in shifts towards higher proportions of Durusdinium 
in M. cavernosa, the magnitude of the shift two months after 
heat stress was not significantly different to that seen in O. 
faveolata (Fig. 3a).

In order to better distinguish the role of background 
Durusdinium on the timing and trajectory of symbiont 
shuffling, corals were grouped by species and by initial 
Durusdinium proportion (Fig. 3b, c). No significant dif-
ferences were found between O. faveolata and S. siderea, 
in the change in the proportion of Durusdinium follow-
ing recovery (t = 0.971, p = 0.333), and these two species 
are therefore pooled in Fig. 3b due to small group sample 
sizes. O. faveolata and S. siderea cores that initially hosted 
some Durusdinium (< 50%) recovered after two months 
with significantly higher proportions of Durusdinium than 
those that initially hosted no (0%) Durusdinium (z = 2.284, 
p = 0.022) (Fig. 3b), despite enduring comparable symbiont 
losses and recovering symbionts only after two months of 
recovery (Fig. S2a). In fact, most O. faveolata and S. siderea 
colonies that hosted no pre-heat stress Durusdinium recov-
ered with < 50% Durusdinium, whilst 34 of the 35 remain-
ing colonies that hosted any pre-heat stress Durusdinium 
(as little as 0.04%) recovered after two months with near 

complete (> 85%) Durusdinium dominance. Fitting a bro-
ken-stick mixed effects linear model (van Buuren 2022) to 
combined O. faveolata and S. siderea data revealed a sig-
nificant change in the slope of the regression between initial 
proportion Durusdinium and final proportion Durusdinium 
at 0.27% initial Durusdinium, above which the model pre-
dicted recovery with 100% Durusdinium, implicating 0.27% 
Durusdinium as a minimum threshold for predicting Durus-
dinium dominance upon recovery in these species.

In contrast, M. cavernosa corals that initially hosted no 
Durusdinium were not limited by the absence of pre-heat 
stress background Durusdinium in their recovery with high 
proportions of Durusdinium: after two months of recovery, 
the proportion of Durusdinium was significantly higher in 
M. cavernosa than in O. faveolata or S. siderea corals, com-
paring only corals hosting no detectable Durusdinium before 
heat stress (z = 2.324, p = 0.020) (Fig. 3c). Indeed, 25 out 
of 27 M. cavernosa colonies recovered after two months to 
host > 90% Durusdinium (Fig. 3c).

Discussion

Effect of background Durusdinium on symbiont shifts 
following recovery from bleaching

Durusdinium became dominant in most O. faveolata and 
S. siderea colonies by the end of heat stress, even before 
symbiont:host cell ratios had begun to recover, indicating 
these were likely residual Durusdinium that were present 
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in cores (April and October batches combined) before heat stress and 
after two months of recovery following heat stress in a Montastraea 

cavernosa, b Orbicella faveolata, and c Siderastrea siderea. Data are 
grouped into 0.02 (proportion Durusdinium) bins
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before heat stress (Glynn 1996; but see Claar et al. 2020 
for symbiont recovery during heat stress). Indeed, the mere 
existence of an effect of initial proportions on recovered pro-
portions of Durusdinium in these coral species implicates 
shuffling as the predominant mechanism for the observed 
assemblage shifts. But regardless of the origins of these 
recovered Durusdinium, the initial presence of this symbi-
ont increased the average percentage Durusdinium recovered 
in O. faveolata and S. siderea from < 50% to > 85% Durus-
dinium. Low abundance ‘background’ Durusdinium in O. 
faveolata and S. siderea played a disproportionately large 
role in shaping post-recovery symbiont communities, sug-
gesting residual Durusdinium are competitively superior 
over residual Cladocopium in bleached tissue and/or that 
residual Durusdinium hinder the acquisition of exogenous 
Cladocopium. The mechanism for these priority effects 
(Palmer et al. 2002; McIlroy et al. 2019) may play out via 
niche pre-emption (commonly seen in microbiome assem-
bly (Debray et al. 2022)), whereby residual Durusdinium 

exclude Cladocopium by resource competition only when 
given this ‘head-start’; without priority effects, D. trenchii 
grown in mixed cultures with Cladocopium is competitively 
inferior in assimilating the nitrogen necessary for niche 
exploitation (McIlroy et al. 2020).

Field surveys of Acropora millepora on the Great Barrier 
Reef during a natural bleaching event found that a minimum 
background threshold of 0.3% Durusdinium predicted mild, 
as opposed to severe, bleaching, and subsequent recovery 
with mainly Durusdinium (Bay et al. 2016). Here, using 
an experimental approach, we report a remarkably similar 
minimum threshold of 0.27% pre-bleaching Durusdinium 
in two Caribbean species, which predicts recovery from 
bleaching with symbiont communities reliably dominated 
(often exclusively) by Durusdinium, in contrast to the vari-
able mixed communities following recovery shown by cor-
als with initial Durusdinium proportions below this thresh-
old. However, we report markedly different Durusdinium 
recovery dynamics in M. cavernosa, which recovered with 
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Fig. 3   Symbiont shuffling magnitude and timing. a Shuffling met-
rics (for April and October corals combined) were calculated at each 
of three sampling time points after heat stress, with error bars rep-
resenting 95% confidence intervals of predicted values. b, c Propor-
tion Durusdinium detected at each of the four sampling time points 
(bleached corals only, April and October corals combined), with 

small points representing individual cores. Larger points and error 
bars represent the mean + / − SE for each group. b Orbicella faveolata 
and Siderastrea siderea corals are grouped together and then catego-
rised by pre-heat stress proportion Durusdinium. c only corals hosting 
no detectable Durusdinium before the start of heat stress are included
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often complete Durusdinium dominance even when these 
symbionts were not present at detectable levels prior to heat 
stress. The competitive success of Durusdinium over Cla-
docopium without niche pre-emption in M. cavernosa may 
suggest either lower niche overlap between competing sym-
bionts, or relatively superior resource assimilation by Durus-
dinium, which could be due to genetic differences in the 
Cladocopium of M. cavernosa, O. faveolata, and S. siderea, 
and/or host differences such as skeletal light scattering, or 
control of symbiosome nitrogen availability (Wangpraseurt 
et al. 2012; Krueger et al. 2020). This result supports earlier 
findings that M. cavernosa showed a higher propensity to 
recover from bleaching with Durusdinium compared to O. 
faveolata and S. siderea (Cunning et al. 201820182018).

Our results support the potentially critical role of low 
abundance symbionts in driving resilience following distur-
bance, with a corresponding interaction between symbiont 
and host species. However, background symbionts may also 
pose an indirect energetic cost to the host if symbionts divert 
some of their resources to competitive antagonism. Indeed, 
the proportion of photosynthate transferred to the host coral 
has been shown to decrease under heat stress when diverse 
symbiont communities are present (Kenkel and Bay 2018), 
and coral life histories with generally lower environmental 
sensitivity have been found to show relatively higher part-
ner specificity (Putnam et al. 2012). In contrast, it has long 
been argued that access to functionally diverse symbionts 
broadens the ecological niche of the host, facilitating recov-
ery from different stressors (Buddemeier and Fautin 1993; 
Baker 2003), and robustness analyses from Red Sea cor-
als has shown rare, low-abundance symbionts may increase 
holobiont resilience under disturbance, if corals are able to 
recover with these previously low-abundance symbionts 
(Ziegler et al. 2018). Although the functional role of back-
ground symbionts in coral holobionts remains broadly unre-
solved (Lee et al. 2016), our findings contribute to the grow-
ing body of evidence supporting the ecological significance 
of background symbionts in shaping coral climate resilience.

Seasonal coral‑symbiont associations

Coral colonies from April 2019 were collected at cool tem-
peratures (25 °C) during the spring warming phase, whilst 
colonies from October 2019 were collected at a warmer 
temperature (29 °C) but during an autumnal cooling phase. 
Seasonal temperature changes in south Florida are also 
accompanied by summer increases in photosynthetically 
active radiation (PAR), with associated increased net and 
gross primary productivity in reef-building corals (Owen 
et al. 2021). Similarly, dissolved inorganic nitrogen (DIN) 
is commonly linked to algal symbiont density increases and 
is typically higher in January-June on Floridian reefs com-
pared to July-December (Muscatine et al. 1989; Dubinsky 

et al. 1990; Muller-Parker et al. 1994; Marubini and Davies 
1996; Lapointe et al. 2004). Consequently, the differences 
detected in M. cavernosa and S. siderea symbiont commu-
nities in April and October are unlikely to be attributable 
solely to temperature, but rather a combination of co-varying 
environmental factors. The temperatures at Emerald reef in 
2019 (which was not considered a bleaching year in Florida) 
were perhaps not sufficiently high to confer the photochemi-
cal advantage necessary for Durusdinium to proliferate and 
exclude co-occurring symbionts between April and October 
in these three coral species, in light of evidence that more 
severe heat stress can induce larger shifts in favour of Durus-
dinium (LaJeunesse et al. 2009; Cunning et al. 2015).

In alignment with prior knowledge of Floridian sea-
sonality in host and symbiont biomass (Fitt et al. 2000; 
Warner et al. 2002), the April-to-October increase in M. 
cavernosa symbiont:host cell ratio likely reflects a host bio-
mass decrease that outweighed Cladocopium decrease. In 
contrast, the April-to-October decrease in S. siderea S:H 
likely reflects Cladocopium decreases that outweighed any 
host biomass decreases. This contrasting result may indi-
cate a larger summer decrease in M. cavernosa biomass, in 
response to the energetic demands of higher summer rates 
of respiration and following photosynthate transfer minima 
from low-density symbiont populations (Fitt et al. 2000; 
Thornhill et al. 2011). Similarly, the type(s) of Cladocopium 
hosted by S. siderea may be more prone to seasonal popula-
tion density acclimatisation, supposedly decreasing during 
warming summer temperatures and longer daylight hours 
(Stimson 1997; Fitt et al. 2000; Warner et al. 2002; Thorn-
hill et al. 2011).The three coral species in this study have 
similar mounding/massive morphologies, but finer scale 
morphological differences, such as corallite arrangement 
and host tissue thickness, may shape the photic microen-
vironment within colonies, influencing symbiont dynamics 
(Loya et al. 2001; Wangpraseurt et al. 2012). An increase in 
the per-cell number of symbionts could theoretically result 
in a faster accumulation of reactive oxygen species (ROS) 
during heat stress (Cunning and Baker 2013), but further 
studies to directly measure intracellular ROS production or 
oxidative damage are needed to substantiate the role of S:H 
in exacerbating oxidative stress and triggering bleaching 
(Gardner et al. 2017; Baird et al. 2018).

Many coral bleaching predictive models are based on 
events that occur during the summer (Grottoli et al. 2014; 
van Hooidonk et al. 2020), yet recent marine heatwaves 
often extend beyond the summer (Sen Gupta et al. 2020), 
as observed during the most recent global mass bleaching 
event (2014–17) (Hughes et al. 2018; van Hooidonk et al. 
2020)). Indeed, seasonal variability in coral thermal tol-
erance has been highlighted as a priority research theme, 
on the basis of predicted winter warming and extended 
warm summer temperatures (Ziegler et al. 2021). Seasonal 
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variation in thermotolerant symbionts and their role in 
shaping the bleaching resistance and resilience of their 
host may be critical for informing this research question.

In conclusion, our results shed light on two specific fac-
tors which should be incorporated into bleaching models 
and predictions, namely seasonal variation in the symbiont 
to host cell ratio and the effect of background thermotol-
erant symbionts in driving symbiont shuffling following 
bleaching. The prospect of increased symbiont loads in 
corals outside of typical summer bleaching periods may 
further elevate bleaching risk if bleaching threshold tem-
peratures are exceeded outside of the usual summertime 
window (van Hooidonk et al. 2020; Cooley et al. 2022). 
Results reported here contribute to understanding of the 
role of background symbionts in coral species’ propensity 
to shift symbiont assemblages under disturbance and sup-
port the importance of background Symbiodiniaceae in 
shaping patterns of coral species-specific symbiont flex-
ibility. Durusdinium symbionts, in particular, may facili-
tate coral recovery from the increasing threat of extended 
heatwaves (Claar et al. 2020), in addition to increasing 
bleaching resistance. Regardless of the putative benefits 
or costs of hosting Durusdinium, continued study of this 
symbiont genus remains crucial for predicting and man-
aging coral resilience, given its increasing abundance on 
warming, urbanised reefs (Baker et al. 2004; Poquita-Du 
et al. 2020; Rubin et al. 2021; Palacio-Castro et al. 2023), 
which typify the pressures facing many of the world’s 
tropical corals.
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